MATH 54-MOCK MIDTERM 2 - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (50 points, 5 pts each)

Label the following statements as \mathbf{T} or \mathbf{F}.
Make sure to JUSTIFY YOUR ANSWERS!!! You may use any facts from the book or from lecture.
(a) If A and B are square matrices, then $\operatorname{det}(A+B)=\operatorname{det}(A)+$ $\operatorname{det}(B)$.

FALSE

For example, take $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$.
Then $\operatorname{det}(A)=1, \operatorname{det}(B)=1$, but $\operatorname{det}(A+B)=\operatorname{det}(O)=0$ (where O is the zero-matrix).
(b) If $\mathcal{A}=\left\{\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \mathbf{a}_{\mathbf{3}}\right\}$ and $\mathcal{D}=\left\{\mathbf{d}_{\mathbf{1}}, \mathbf{d}_{\mathbf{2}}, \mathbf{d}_{\mathbf{3}}\right\}$ are bases for V, and P is the matrix whose i th column is $\left[\mathbf{d}_{\mathbf{i}}\right]_{\mathcal{A}}$, then for all \mathbf{x} in V, we have $[\mathbf{x}]_{\mathcal{D}}=P[\mathbf{x}]_{\mathcal{A}}$

FALSE

First of all, $P=\left[\begin{array}{lll}{\left[\mathbf{d}_{\mathbf{1}}\right]_{\mathcal{A}}} & {\left[\mathbf{d}_{\mathbf{2}}\right]_{\mathcal{A}}} & \left.\left[\mathbf{d}_{\mathbf{3}}\right]_{\mathcal{A}}\right]=\mathcal{A}\end{array} \stackrel{P}{\leftarrow} \mathcal{D}\right.$ (remember, you always evaluate with respect to the new, cool basis, here it is \mathcal{A}), so we should have:

$$
[\mathbf{x}]_{\mathcal{A}}=\mathcal{A} \stackrel{P}{\leftarrow} \mathcal{D}[\mathbf{x}]_{\mathcal{D}}=P[\mathbf{x}]_{\mathcal{D}}
$$

And not the opposite!
(c) If $\operatorname{Nul}(A)=\{\mathbf{0}\}$, then A is invertible.

FALSE

Don't worry, this got me too! This statement is true if A is SQUARE! But if A is not square, this statement is never true!

For example, let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$. Then $\operatorname{Nul}(A)=\{0\}$, but A is not invertible, because it is not square.
(d) A 3×3 matrix A with only one eigenvalue cannot be diagonalizable

SUPER FALSE!!!!!!!!!!

Remember that to check if a matrix is not diagonalizable, you really have to look at the eigenvectors!

For example, $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$ has only eigenvalue 2 , but is diagonalizable (it's diagonal!). Or you can choose A to be the O matrix, or the identity matrix, this also works!
(e) \mathbb{R}^{2} is a subspace of \mathbb{R}^{3}

FALSE!

\mathbb{R}^{2} is not even a subset of $\mathbb{R}^{3}!!!$ Don't confuse this with
$\left\{\left.\left[\begin{array}{l}x \\ y \\ 0\end{array}\right] \right\rvert\, x, y \in \mathbb{R}\right\}$, which is a subspace of \mathbb{R}^{3} and very similar
\mathbb{R}^{2} (bune to \mathbb{R}^{2} (but not exactly the same)
(f) If W is a subspace of V and \mathcal{B} is a basis for V, then some subset of \mathcal{B} is a basis for W.

FALSE

This is also very tricky (this got me too :)), because the 'opposite' statement does hold, namely if \mathcal{B} is a basis for W, you can always complete \mathcal{B} to become a basis of V (this is the 'basis extension theorem').

As a counterexample, take $V=\mathbb{R}^{3}, \mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$, and $W=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}\left(\right.$ a line in $\left.\mathbb{R}^{3}\right)$.
If the statement was true, then one of the vectors in \mathcal{B} would be a basis for W, but this is bogus.
(g) If $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ are 2 eigenvectors of A corresponding to 2 different eigenvalues λ_{1} and λ_{2}, then $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ are linearly independent!

TRUE (finally!)
Note: The proof is a bit complicated, but I've seen this on a past exam! I think at that point, the professor wanted to get revenge on his students for not coming to lecture!

Remember that eigenvectors have to be nonzero!
Now, assume $a \mathbf{v}_{\mathbf{1}}+b \mathbf{v}_{\mathbf{2}}=\mathbf{0}$.
Then apply A to this to get:

$$
A\left(a \mathbf{v}_{\mathbf{1}}+b \mathbf{v}_{\mathbf{2}}\right)=A(\mathbf{0})=\mathbf{0}
$$

That is:

$$
a A\left(\mathbf{v}_{\mathbf{1}}\right)+b A\left(\mathbf{v}_{\mathbf{2}}\right)=\mathbf{0}
$$

$$
a \lambda_{1} \mathbf{v}_{\mathbf{1}}+b \lambda_{2} \mathbf{v}_{\mathbf{2}}=\mathbf{0}
$$

However, we can also multiply the original equation by λ_{1} to get:

$$
a \lambda_{1} \mathbf{v}_{\mathbf{1}}+b \lambda_{1} \mathbf{v}_{\mathbf{2}}=\mathbf{0}
$$

Subtracting this equation from the one preceding it, we get:

$$
b\left(\lambda_{1}-\lambda_{2}\right) \mathbf{v}_{\mathbf{2}}=\mathbf{0}
$$

So

$$
b\left(\lambda_{1}-\lambda_{2}\right)=\mathbf{0}
$$

But $\lambda_{1} \neq \lambda_{2}$, so $\lambda_{1}-\lambda_{2} \neq 0$, hence we get $b=0$.
But going back to the first equation, we get:

$$
a \mathbf{v}_{\mathbf{1}}=\mathbf{0}
$$

So $a=0$.
Hence $a=b=0$, and we're done!
(h) If a matrix A has orthogonal columns, then it is an orthogonal matrix.

FALSE

Remember that an orthogonal matrix has to have orthonormal columns!
(i) For every subspace W and every vector $\mathbf{y}, \mathbf{y}-\operatorname{Proj}_{W} \mathbf{y}$ is orthogonal to $\operatorname{Proj}_{W} \mathbf{y}$ (proof by picture is ok here)
TRUE
Draw a picture! $\operatorname{Proj}_{W} \mathbf{y}$ is just another name for \hat{y}.
(j) If \mathbf{y} is already in W, then $\operatorname{Proj}_{W} \mathbf{y}=\mathbf{y}$

TRUE

Again, draw a picture!
If you want a more mathematical proof, here it is:
Let $\mathcal{B}=\left\{\mathbf{w}_{\mathbf{1}}, \cdots \mathbf{w}_{\mathbf{p}}\right\}$ be an orthogonal basis for W ($p=$ $\operatorname{Dim}(W)$).

Then $y=\left(\frac{\mathbf{y} \cdot \mathbf{w}_{1}}{\mathbf{w}_{1} \cdot \mathbf{w}_{1}}\right) \mathbf{w}_{\mathbf{1}}+\cdots+\left(\frac{\mathbf{y} \cdot \mathbf{w}_{\mathbf{p}}}{\mathbf{w}_{\mathbf{p}} \cdot \mathbf{w}_{\mathbf{p}}}\right) \mathbf{w}_{\mathbf{p}}$.
But then, by definition of $\operatorname{Proj}_{W} \mathbf{y}=\hat{\mathbf{y}}$, we get:
$\hat{y}=\left(\frac{\mathbf{y} \cdot \mathbf{w}_{\mathbf{1}}}{\mathbf{w}_{\mathbf{1}} \cdot \mathbf{w}_{\mathbf{1}}}\right) \mathbf{w}_{\mathbf{1}}+\cdots+\left(\frac{\mathbf{y} \cdot \mathbf{w}_{\mathbf{p}}}{\mathbf{w}_{\mathbf{p}} \cdot \mathbf{w}_{\mathbf{p}}}\right) \mathbf{w}_{\mathbf{p}}=y$
So $\hat{\mathbf{y}}=\mathrm{y}$ in this case.
2. (20 points) Find a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$, where:

$$
A=\left[\begin{array}{ccc}
7 & -6 & 0 \\
0 & 1 & 0 \\
0 & 3 & 7
\end{array}\right]
$$

Eigenvalues: $\operatorname{det}(A-\lambda I)=0$ (expanding along last column), which gives $(\lambda-1)(\lambda-7)^{2}=0$, so $\lambda=1,7$

$$
\lambda=1
$$

$$
\begin{aligned}
& \operatorname{Nul}(A-I)=\operatorname{Nul}\left(\left[\begin{array}{ccc}
6 & -6 & 0 \\
0 & 0 & 0 \\
0 & 3 & 6
\end{array}\right]\right)=\operatorname{Nul}\left(\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]\right)=\operatorname{Span}\left\{\left[\begin{array}{c}
-2 \\
-2 \\
1
\end{array}\right]\right\} \\
& \underline{\lambda=7} \\
& \operatorname{Nul}(A-7 I)=N u l\left(\left[\begin{array}{ccc}
0 & -6 & 0 \\
0 & 0 & 0 \\
0 & 3 & 0
\end{array}\right]\right)=\operatorname{Nul}\left(\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right)=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

Hence:

$$
D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 7 & 0 \\
0 & 0 & 7
\end{array}\right], P=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
-2 & 0 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

3. (20 points) Use the Gram-Schmidt process to obtain an orthonormal basis of $W=\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$, where:

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}
2 \\
1 \\
0 \\
3
\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right], \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}
6 \\
-3 \\
1 \\
11
\end{array}\right]
$$

First of all, $\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}\right\}$ is an orthogonal basis for W, where:

$$
\begin{aligned}
& \mathbf{w}_{\mathbf{1}}=\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}
2 \\
1 \\
0 \\
3
\end{array}\right] \\
& \mathbf{w}_{\mathbf{2}}=\mathbf{v}_{\mathbf{2}}-\left(\frac{\mathbf{v}_{\mathbf{2}} \cdot \mathbf{w}_{\mathbf{1}}}{\mathbf{w}_{\mathbf{1}} \cdot \mathbf{w}_{\mathbf{1}}}\right) \mathbf{w}_{\mathbf{1}}=\mathbf{v}_{\mathbf{2}}-\frac{7}{14} \mathbf{w}_{\mathbf{1}}=\left[\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
3
\end{array}\right]=\left[\begin{array}{c}
0 \\
\frac{3}{2} \\
0 \\
-\frac{1}{2}
\end{array}\right] \sim\left[\begin{array}{c}
0 \\
3 \\
0 \\
-1
\end{array}\right] \\
& \mathbf{w}_{\mathbf{3}}=\mathbf{v}_{\mathbf{3}}-\left(\frac{\mathbf{v}_{\mathbf{3}} \cdot \mathbf{w}_{\mathbf{1}}}{\mathbf{w}_{\mathbf{1}} \cdot \mathbf{w}_{\mathbf{1}}}\right) \mathbf{w}_{\mathbf{1}}-\left(\frac{\mathbf{v}_{\mathbf{3}} \cdot \mathbf{w}_{\mathbf{2}}}{\mathbf{w}_{\mathbf{2}} \cdot \mathbf{w}_{\mathbf{2}}}\right) \mathbf{w}_{\mathbf{2}}=\mathbf{v}_{\mathbf{3}}-\frac{42}{14} \mathbf{w}_{\mathbf{1}}-\frac{-20}{10} \mathbf{w}_{\mathbf{2}} \\
&=\mathbf{v}_{\mathbf{3}}-3 \mathbf{w}_{\mathbf{1}}+2 \mathbf{w}_{\mathbf{2}}=\left[\begin{array}{c}
6 \\
-3 \\
1 \\
11
\end{array}\right]-3\left[\begin{array}{l}
2 \\
1 \\
0 \\
3
\end{array}\right]+2\left[\begin{array}{c}
0 \\
3 \\
0 \\
-1
\end{array}\right] \\
&=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

Finally, an orthonormal basis for W is $\left\{\mathbf{w}_{\mathbf{1}}{ }^{\prime}, \mathbf{w}_{\mathbf{2}}{ }^{\prime}, \mathbf{w}_{\mathbf{3}}{ }^{\prime}\right\}$, where:
$\mathbf{w}_{\mathbf{1}}{ }^{\prime}=\frac{\mathbf{w}_{\mathbf{1}}}{\left\|\mathbf{w}_{\mathbf{1}}\right\|}=\frac{1}{\sqrt{14}}\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 3\end{array}\right], \mathbf{w}_{\mathbf{2}}{ }^{\prime}=\frac{\mathbf{w}_{\mathbf{2}}}{\left\|\mathbf{w}_{\mathbf{2}}\right\|}=\frac{1}{\sqrt{10}}\left[\begin{array}{c}0 \\ 3 \\ 0 \\ -1\end{array}\right], \mathbf{w}_{\mathbf{3}}{ }^{\prime}=\frac{\mathbf{w}_{\mathbf{3}}}{\left\|\mathbf{w}_{\mathbf{3}}\right\|}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$
4. (10 points) Find the determinant of the following matrix A :

$$
A=\left[\begin{array}{cccccc}
1 & 42 & 536 & 789 & 4201 & 123456789 \\
0 & 1 & 2011 & 2012 & \pi m & \text { Dolphin } \\
0 & 0 & 2 & 0 & 4 & 5 \\
0 & 0 & 0 & 0 & 3 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 4 & 0 & 2 & -1
\end{array}\right]
$$

Note: The answer may surprise you :)

First of all, expanding along the first column, and then along the first column again, we get that:

$$
\operatorname{det}(A)=\left|\begin{array}{cccc}
2 & 0 & 4 & 5 \\
0 & 0 & 3 & 1 \\
0 & 1 & 0 & 0 \\
4 & 0 & 2 & -1
\end{array}\right|
$$

Now expanding along the 3rd row (or the second column), we get:

$$
\operatorname{det}(A)=-\left|\begin{array}{ccc}
2 & 4 & 5 \\
0 & 3 & 1 \\
4 & 2 & -1
\end{array}\right|
$$

Note: Careful about the signs!
Finally, expanding along the second row (or first column), we get:

$$
\operatorname{det}(A)=-\left(3\left|\begin{array}{cc}
2 & 5 \\
4 & -1
\end{array}\right|-\left|\begin{array}{ll}
2 & 4 \\
4 & 2
\end{array}\right|\right)=-((3)(-22)+12)=54
$$

NO WAY!!! I know, right? I did not expect that at all! :D
Note: Here's a smarter way to evaluate $\operatorname{det}(A)$ (courtesy Rongchang Lei): Just row-reduce!

$$
\left.\left.\begin{array}{rl}
\operatorname{det}(A) & =\left|\begin{array}{cccc}
2 & 0 & 4 & 5 \\
0 & 0 & 3 & 1 \\
0 & 1 & 0 & 0 \\
4 & 0 & 2 & -1
\end{array}\right| \\
& =\left|\begin{array}{cccc}
2 & 0 & 4 & 5 \\
0 & 0 & 3 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & -6 & -11
\end{array}\right| \\
& =-\left|\begin{array}{cccc}
2 & 0 & 4 & 5 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 1 \\
0 & 0 & -6 & -11
\end{array}\right| \\
& =-\left|\begin{array}{ccc}
2 & 0 & 4 \\
5 \\
0 & 1 & 0 \\
0 & 0 & 3 \\
1 \\
0 & 0 & 0
\end{array}\right| \\
& -9
\end{array} \right\rvert\, \quad\left(R_{2} \leftrightarrow R_{3}\right)\right\}
$$

5. (10 points) Find a least squares solution to the following system $A \mathrm{x}=\mathrm{b}$, where:

$$
\begin{gathered}
A=\left[\begin{array}{cc}
2 & 0 \\
1 & -1 \\
-1 & 2 \\
0 & 1
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right] \\
A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b} \\
{\left[\begin{array}{cccc}
2 & 1 & -1 & 0 \\
0 & -1 & 2 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
1 & -1 \\
-1 & 2 \\
0 & 1
\end{array}\right] \hat{\mathbf{x}}=\left[\begin{array}{cccc}
2 & 1 & -1 & 0 \\
0 & -1 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]} \\
{\left[\begin{array}{cc}
6 & -3 \\
-3 & 6
\end{array}\right] \hat{\mathbf{x}}=\left[\begin{array}{c}
3 \\
-1
\end{array}\right]}
\end{gathered}
$$

Which gives:

$$
\hat{\mathbf{x}}=\left[\begin{array}{cc}
6 & -3 \\
-3 & 6
\end{array}\right]^{-1}\left[\begin{array}{c}
3 \\
-1
\end{array}\right]=\left[\begin{array}{c}
\frac{5}{9} \\
\frac{1}{9}
\end{array}\right]
$$

6. (10 points) Define $T: P_{3} \rightarrow P_{3}$ by:

$$
T(p(t))=t p^{\prime \prime}(t)-2 p^{\prime}(t)
$$

Find the matrix A of T relative to the basis $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$ of P_{3}

First calculate:

- $T(1)=t(0)-2(0)=0$
- $T(t)=t(0)-2(1)=-2$
- $T\left(t^{2}\right)=t(2)-2(2 t)=-2 t$
- $T\left(t^{3}\right)=t(6 t)-2\left(3 t^{2}\right)=6 t^{2}-6 t^{2}=0$

Now evaluate all those vectors with respect to \mathcal{B} :

- $[T(1)]_{\mathcal{B}}=[0]_{\mathcal{B}}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$
- $[T(t)]_{\mathcal{B}}=[-2]_{\mathcal{B}}=\left[\begin{array}{c}-2 \\ 0 \\ 0 \\ 0\end{array}\right]$
- $\left[T\left(t^{2}\right)\right]_{\mathcal{B}}=[-2 t]_{\mathcal{B}}=\left[\begin{array}{c}0 \\ -2 \\ 0 \\ 0\end{array}\right]$
- $\left[T\left(t^{3}\right)\right]_{\mathcal{B}}=[0]_{\mathcal{B}}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$

Putting everything together, we get that the matrix of T relative to \mathcal{B} is:

$$
A=\left[\begin{array}{cccc}
0 & -2 & 0 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

7. (15 points) Let $\mathcal{B}=\left\{\left[\begin{array}{c}7 \\ -2\end{array}\right],\left[\begin{array}{c}2 \\ -1\end{array}\right]\right\}, \mathcal{C}=\left\{\left[\begin{array}{l}4 \\ 1\end{array}\right],\left[\begin{array}{l}5 \\ 2\end{array}\right]\right\}$.
(a) Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}

We want to find $\mathcal{C} \stackrel{P}{\leftarrow} \mathcal{B}$.
$[\mathcal{C} \mid \mathcal{B}] \rightarrow\left[\begin{array}{cc|cc}4 & 5 & 7 & 2 \\ 1 & 2 & -2 & -1\end{array}\right] \rightarrow\left[\begin{array}{cc|cc}4 & 5 & 7 & 2 \\ 0 & -3 & 15 & 6\end{array}\right] \rightarrow\left[\begin{array}{cc|cc}4 & 5 & 7 & 2 \\ 0 & 1 & -5 & -2\end{array}\right]$

$$
\rightarrow\left[\begin{array}{cc|cc}
4 & 0 & 32 & 12 \\
0 & 1 & -5 & -2
\end{array}\right]
$$

$$
\rightarrow\left[\begin{array}{cc|cc}
1 & 0 & 8 & 3 \\
0 & 1 & -5 & -2
\end{array}\right]
$$

Hence:

$$
\mathcal{C} \stackrel{P}{\leftarrow} \mathcal{B}=\left[\begin{array}{cc}
8 & 3 \\
-5 & -2
\end{array}\right]
$$

(b) Find $[\mathbf{x}]_{\mathcal{C}}$, where $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}4 \\ 5\end{array}\right]$

We have:

$$
[\mathbf{x}]_{\mathcal{C}}=\mathcal{C} \stackrel{P}{\leftarrow} \mathcal{B}[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{cc}
8 & 3 \\
-5 & -2
\end{array}\right]\left[\begin{array}{l}
4 \\
5
\end{array}\right]=\left[\begin{array}{c}
47 \\
-30
\end{array}\right]
$$

8. (10 points) Find the orthogonal projection of t^{2} onto the subspace W spanned by $\{1, t\}$, with respect to the following inner product:

$$
\langle p, q\rangle=\int_{-1}^{1} p(t) q(t) d t
$$

Let $p_{1}(t)=1, p_{2}(t)=t, p_{3}(t)=t^{2}$, then:

$$
\left.\left.\begin{array}{rl}
\hat{p_{3}}=\left(\frac{\left\langle p_{3}, p_{1}\right\rangle}{\left\langle p_{1}, p_{1}\right\rangle}\right) p_{1}+\left(\frac{\left\langle p_{3}, p_{2}\right\rangle}{\left\langle p_{2}, p_{2}\right\rangle}\right) p_{2} & =\left(\frac{\int_{-1}^{1} t^{2} d t}{\int_{-1}^{1} d t}\right)(1)+\left(\frac{\int_{-1}^{1} t^{3} d t}{\int_{-1}^{1} t^{2} d t}\right)(t)=\left(\frac{2}{3}\right. \\
2
\end{array}\right)(1)+\left(\frac{0}{\frac{2}{3}}\right) t=\frac{1}{3}\right) ~\left(\hat{p_{3}}(t)=\frac{1}{3}\right.
$$

9. (20 points, 10 points each)
(a) Find a basis for $\operatorname{Row}(A)$ and $\operatorname{Col}(A)$, where:

$$
A=\left[\begin{array}{ccccc}
2 & -3 & 6 & 2 & 5 \\
-2 & 3 & -3 & -3 & -4 \\
4 & -6 & 9 & 5 & 0 \\
-2 & 3 & 3 & -4 & 1
\end{array}\right]
$$

If you row-reduce A, you get that:

$$
A \sim\left[\begin{array}{ccccc}
2 & -3 & 6 & 2 & 5 \\
0 & 0 & 3 & -1 & 1 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Note: You could have row-reduced it further, but no need!

Notice that the pivots are in the all 4 rows and the 1st, 3rd, 4th, and 5th column respectively, hence:

Basis for Row(A):

$$
\mathcal{B}=\left\{\left[\begin{array}{c}
2 \\
-3 \\
6 \\
2 \\
5
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
3 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
3
\end{array}\right]\right\}
$$

Basis for $\operatorname{Col}(\mathrm{A}):$

$$
\mathcal{B}=\left\{\left[\begin{array}{c}
2 \\
-2 \\
4 \\
-2
\end{array}\right],\left[\begin{array}{c}
6 \\
-3 \\
9 \\
3
\end{array}\right],\left[\begin{array}{c}
2 \\
-3 \\
5 \\
-4
\end{array}\right],\left[\begin{array}{c}
5 \\
-4 \\
0 \\
1
\end{array}\right]\right\}
$$

(b) What is $\operatorname{Rank}(A)$? What is $\operatorname{Dim}(\operatorname{Nul}(A))$?

$$
\operatorname{Rank}(A)=4 \text { (number of pivots) }
$$

$\operatorname{Dim}(\operatorname{Nul}(A))=5-\operatorname{Rank}(A)=5-4=1$ (by Rank-Nullity theorem)
10. (15 points)
(a) Find an invertible matrix P and a matrix C of the form $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ such that $A=P C P^{-1}$, where:

$$
A=\left[\begin{array}{cc}
2 & -2 \\
1 & 0
\end{array}\right]
$$

Eigenvalues:

The characteristic polynomial of A is: $\operatorname{det}(A-\lambda I)=(\lambda-$ $2)(\lambda)+2=\lambda^{2}-2 \lambda+2=0$ iff $\lambda=1 \pm i$

Eigenspace for $\lambda=1-i$

$$
\begin{gathered}
\operatorname{Nul}(A-(1-i) I)=N u l\left(\left[\begin{array}{cc}
1+i & -2 \\
1 & -1+i
\end{array}\right]\right)=\operatorname{Nul}\left(\left[\begin{array}{cc}
1 & -1+i \\
0 & 0
\end{array}\right]\right)=\operatorname{Span}\left\{\left[\begin{array}{c}
1-i \\
1
\end{array}\right]\right\} \\
\text { So an eigenvector corresponding to } \lambda=1-i \text { is } \mathbf{v}=\left[\begin{array}{c}
1-i \\
1
\end{array}\right]
\end{gathered}
$$

Finding P and C :
First of all, for P, we have:

$$
\operatorname{Re}(\mathbf{v})=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \operatorname{Im}(\mathbf{v})=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
$$

Hence: $P=\left[\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right]$.
As for C, we have $\operatorname{Re}(\lambda)=1, \operatorname{Im}(\lambda)=-1$. Now remember that you put those values on the first ROW of C, and you get:

$$
C=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

(Remember that the diagonal entries of C are equal and the nondiagonal ones are opposite of each other)
(b) Write C as a composition of a rotation and a scaling.
C is a rotation by ϕ followed by a scaling r.
r is given by: $r=\sqrt{\operatorname{det}(C)}=\sqrt{2}$, hence:

$$
C=\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & \sqrt{2}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

If you compare this latter matrix with the rotation matrix $\left[\begin{array}{cc}\cos (\phi) & -\sin (\phi) \\ \sin (\phi) & \cos (\phi)\end{array}\right]$, you should realize that $\phi=\frac{\pi}{4}$.

Hence C is a rotation by $\phi=\frac{\pi}{4}$ followed by a scaling $r=\sqrt{2}$.

